Library Design & Assembly
uSort-M is fully agnostic to input library composition. Any pooled DNA source can be used, including:
- Commercial oligo pools (Twist, IDT)
- Multiplex assembly products
- Error-prone PCR libraries
- Pooled site-directed mutagenesis
- Degenerate codon libraries
Design Considerations
Library Size & Skew
The most critical factor affecting recovery efficiency is library skew—the fold-difference between the most and least abundant variants. The choice of synthesis vendor affects both library skew and sequence length constraints.
Commercial Oligo Pool Vendors
For sequences ≤300 bp (or 30 bp inserts for substitution libraries):
- IDT oPools — Excellent uniformity, typically <4-fold skew
- Twist Oligo Pools — High-quality synthesis, typically <4-fold skew
Gene Fragment Vendors
For direct gene synthesis (traditional approach, or full-length genes for substitution libraries):
- Twist Gene Fragments — Up to 1800 bp
- IDT gBlocks — 125-3000 bp
- IDT eBlocks — 300-2000 bp
- Instance Bio — Cost-effective for longer genes, higher skew (10-fold or more)
usortm estimate command to predict required
oversampling for your library parameters before ordering synthesis.
Sequence Length
Because uSort-M leverages long read sequencing for demultiplexing, it supports highly diverse library inputs. However, because the observed rate of synthesis errors scales with sequence length, libraries containing long sequences may require deeper oversampling to achieve full coverage.
Transformation Scale
The number of transformants should exceed your library size to ensure all variants are represented. We recommend:
- 5–10× library size for uniform libraries (low skew)
- 10–20× library size for skewed libraries
Planning Your Experiment
Cost Estimation
Before ordering synthesis, use the usortm estimate command to calculate projected costs
and coverage for your specific library parameters:
# Basic estimation for a 500-variant library
usortm estimate --library-size 500 --seq-length 300
# Custom oversampling and skew parameters
usortm estimate \
--library-size 1000 \
--seq-length 450 \
--fold-sampling 6 \
--skew 8
# Get JSON output for programmatic use
usortm estimate --library-size 500 --json
# Adjust FACS rates for your facility
usortm estimate \
--library-size 500 \
--machine-rate 85 \
--operator-rate 70
The estimate command outputs:
- Detailed cost breakdown by step (synthesis, cloning, sorting, barcoding, sequencing, hit-picking)
- Comparison with traditional gene synthesis approaches
- Effort metrics (time required for sorting and barcoding)
- Expected timeline from start to finish
Experiment Planning
Create a complete experimental plan with the usortm plan command:
# Create a project directory with experiment plan
usortm plan variants.csv --output my_experiment/ \
--seq-length 300 \
--fold-sampling 4 \
--skew 4
# Plan with custom parameters
usortm plan variants.csv --output large_lib/ \
--seq-length 500 \
--fold-sampling 8 \
--target-coverage 0.95
The plan command generates:
- Project directory structure
- Plate layout files
- Reagent preparation lists
- Predicted coverage statistics based on simulation
- Timeline and checkpoint schedule
File Formats
Variant Library CSV
Define your library as a CSV file with variant sequences. Two formats are supported:
Full sequence format (recommended for diverse libraries):
name,sequence
sfGFP_Y66H,ATGAGTAAAGGAGAAGAACTTTTCACTGGAGTTGTCCCAATTCTTGTTGAATTAGATGGTGATGTTAATGGGCACAAATTTTCTGTCAGTGGAGAGGGTGAAGGTGATGCTACATACGGAAAGCTTACCCTTAAATTTATTTGCACTACTGGAAAACTACCTGTTCCATGGCCAACACTTGTCACTACTTTAACTTATGGTGTTCAATGCTTTTCCCGTTATCCGGATCACATGAAACGGCATGACTTTTTCAAGAGTGCCATGCCCGAAGGTTATGTACAGGAACGCACTATATCTTTCAAAGATGACGGGAACTACAAGACGCGTGCTGAAGTCAAGTTTGAAGGTGATACCCTTGTTAATCGTATCGAGTTAAAAGGTATTGATTTTAAAGAAGATGGAAACATTCTCGGACACAAACTCGAGTACAACTATAACTCACACAATGTATACATCACGGCAGACAAACAAAAGAATGGAATCAAAGCTAACTTCAAAATTCGCCACAACATTGAAGATGGATCCGTTCAACTAGCAGACCATTATCAACAAAATACTCCAATTGGCGATGGCCCTGTCCTTTTACCAGACAACCATTACCTGTCGACACAATCTGCCCTTTCGAAAGATCCCAACGAAAAGCGTGACCACATGGTCCTTCTTGAGTTTGTAACTGCTGCTGGGATTACACATGGCATGGATGAGCTCTACAAATAA
sfGFP_F64L,ATGAGTAAAGGAGAAGAACTTTTCACTGGAGTTGTCCCAATTCTTGTTGAATTAGATGGTGATGTTAATGGGCACAAATTTTCTGTCAGTGGAGAGGGTGAAGGTGATGCTACATACGGAAAGCTTACCCTTAAATTTATTTGCACTACTGGAAAACTACCTGTTCCATGGCCAACACTTGTCACTACTTTAACTTATGGTGTTCAATGCTTTTCCCGTTATCCGGATCACATGAAACGGCATGACTTTTTCAAGAGTGCCATGCCCGAAGGTTATGTACAGGAACGCACTATATCTTTCAAAGATGACGGGAACTACAAGACGCGTGCTGAAGTCAAGTTTGAAGGTGATACCCTTGTTAATCGTATCGAGTTAAAAGGTATTGATTTTAAAGAAGATGGAAACATTCTCGGACACAAACTCGAGTACAACTATAACTCACACAATGTATACATCACGGCAGACAAACAAAAGAATGGAATCAAAGCTAACTTCAAAATTCGCCACAACATTGAAGATGGATCCGTTCAACTAGCAGACCATTATCAACAAAATACTCCAATTGGCGATGGCCCTGTCCTTTTACCAGACAACCATTACCTGTCGACACAATCTGCCCTTTCGAAAGATCCCAACGAAAAGCGTGACCACATGGTCCTTCTTGAGTTTGTAACTGCTGCTGGGATTACACATGGCATGGATGAGCTCTACAAATAA
Mutation format (for site-saturation or substitution libraries):
name,mutation
sfGFP_Y66H,Y66H
sfGFP_Y66F,Y66F
sfGFP_Y66W,Y66W
sfGFP_F64L,F64L
sfGFP_F64I,F64I
For mutation format, you must provide a reference sequence file. Mutations are specified using standard notation:
WT_AA + Position + Mutant_AA (e.g., Y66H = tyrosine at position 66 mutated to histidine).
Assembly Protocol
Materials
| Item | Supplier | Catalog # |
|---|---|---|
| KAPA HiFi HotStart ReadyMix | Roche | KK2602 |
| DNA Clean & Concentrator | Zymo | D4001 |
| NEBridge BsaI-HFv2 Golden Gate Master Mix | NEB | E1601S |
| NEB 5-alpha Competent Cells | NEB | C2987H |
Step 1: Convert ssDNA Pool to dsDNA
- Resuspend oligo pool to 20 ng/µL in DI water
- Set up PCR reaction:
- 0.5 µL oligo pool (final conc. 0.4 ng/µL)
- 12.5 µL KAPA HiFi HotStart ReadyMix (2×)
- 0.5 µL forward primer (10 µM)
- 0.5 µL reverse primer (10 µM)
- 11 µL H₂O
- Run thermal cycle:
- 95 °C, 3 min
- 12× [98 °C, 20 s; 62 °C, 15 s; 72 °C, 15 s]
- 72 °C, 1 min
- Verify product by gel electrophoresis
- Purify using DNA Clean & Concentrator
Step 2: Golden Gate Assembly
- Set up 100 µL Golden Gate reaction:
- 50 µL NEBridge BsaI-HFv2 Master Mix (2×)
- X µL purified insert (50–100 ng)
- X µL destination vector (50–100 ng)
- H₂O to 100 µL
- Run recommended Golden Gate program (see NEB protocol)
Step 3: Transformation
- Thaw 25 µL NEB 5-alpha cells on ice
- Add 3 µL Golden Gate reaction, mix gently
- Incubate on ice, 30 min
- Heat shock at 42 °C, 30 s
- Return to ice, 5 min
- Remove 1 µL for CFU determination (see below)
- Add remaining cells to 1 mL LB + 100 µg/mL carbenicillin (LBcarb)
- Incubate overnight at 37 °C with shaking
Step 4: Determine Transformation Scale
- Dilute the 1 µL aliquot 1:20 and 1:100 in LB + antibiotic
- Plate 20 µL of each dilution on LB-agar + antibiotic
- Incubate overnight at 37 °C
- Count colonies to estimate total transformants
Step 5: Prepare Glycerol Stock
- Mix 500 µL overnight culture with 500 µL sterile 50% glycerol
- Store at -80 °C
Next Steps
With your transformed library in hand, proceed to FACS sorting to isolate single clones into 384-well plates.